Prime Factorization

This chapter covers notes on prime factorization.

Fundamental Theorem of Arithmetic

example. The prime factorization of 45:

primes(45)=(5)(9).=(5)((3)(3)).=5132 \eqs{ \pf(45) &= (5)(9). \\ &= (5)((3)(3)). \\ &= 5^1 \by 3^2 }

We use the notation primes(n){\pf(n)} to denote the prime factorization of some integer n.{n.}

example. Consider primes(90),{\pf(90),} primes(135),{\pf(135),} primes(180),{\pf(180),} and primes(225):{\pf(225):}

primes(90)=(5)(18)=(5)((3)(6))=(5)((3)((3)(2)))=513221 \eqs{ \pf(90) &= (5)(18) \\ &= (5)((3)(6)) \\ &= (5)((3)((3)(2))) \\ &= 5^1 \by 3^2 \by 2^1 }
primes(135)=(5)(27)=(5)((3)(9))=(5)((3)((3)(3)))=5133 \eqs{ \pf(135) &= (5)(27) \\ &= (5)((3)(9)) \\ &= (5)((3)((3)(3))) \\ &= 5^1 \by 3^3 }
primes(180)=(90)(2)=((5)(3)(3)(2))(2)=513222 \eqs{ \pf(180) &= (90)(2) \\ &= ((5)(3)(3)(2))(2) \\ &= 5^1 \by 3^2 \by 2^2 }
primes(225)=(45)(5)=((5)(3)(3))(5)=5232 \eqs{ \pf(225) &= (45)(5) \\ &= ((5)(3)(3))(5) \\ &= 5^2 \by 3^2 }

The integers 90, 135, 180, and 225 are each multiples of 45, and they each contain the prime factorization of 45. We can use the prime factorizations of 12 and 45 to find lcm(12,45).{\lcm(12,45).} For 12, we have primes(12)=2331.{\pf(12) = 2^3 \by 3^1.} And for 45, we have primes(45)=3251.{\pf(45) = 3^2 \by 5^1.} It follows that the least common multiple is 323251=180.{3^2 \by 3^2 \by 5^1 = 180.} Thus, we have lcm(12,45)=180.{\lcm(12,45)=180.} We can verify this by actually laying out the multiples:

×{\times}1234567891011121315
121224364860728496108120132144156180{\red{180}}
454590135180{\red{180}}225270315360405450495540585675

For any two positive integers a{a} and b,{b,} we can obtain the least common multiple through the product of the maximum exponents of the prime factors a{a} and b:{b:}

a=p1e1p2e2p3e3pnenb=p1f1p2f2p3f3pnfnlcm(a,b)=p1max(e1,f1)p2max(e2,f2)p3max(e3,f3)pnmax(en,fn) \eqs{ a &= p_1^{e_1} \by p_2^{e_2} \by p_3^{e_3} \ldots \by p_n^{e_n} \\ b &= p_1^{f_1} \by p_2^{f_2} \by p_3^{f_3} \ldots \by p_n^{f_n} \\ \lcm(a,b) &= p_1^{\max(e_1,f_1)} \by p_2^{\max(e_2,f_2)} \by p_3^{\max(e_3,f_3)} \by \ldots \by p_n^{\max(e_n,f_n)} }

This results from an important theorem in mathematics, called the Fundamental Theorem of Arithmetic (FTA).

fundamental theorem of arithmetic. Let nZ:n>1.{n \in \uint : n \gt 1.} There are unique prime numbers pi{p_i} satisfying the relation p1p2pk{p_1 \le p_2 \le \ldots \le p_k} with

n=p1n1×p2n2×pknk=i=1kpini, n = p_1^{n_1} \times p_2^{n_2} \times \ldots p_k^{n_k} = \dprod{i=1}{k}{p_i^{n_i},}

where niZ+.{n_i \in \pint.}

FTA tells us that we can represent any integer greater than 1 in terms of its prime factors. This also means that we can construct any integer greater than 1 in terms of its primes. It's why primes are often called the building blocks of numbers. For example:

99=33371,1000=2353,1001=71111131. \eqs{ 99 &= 3^3 \by 37^1, \\ 1000 &= 2^3 \by 5^3, \\ 1001 &= 7^1 \by 11^1 \by 13^1. }