Quadratic Approximations

When linear approximations are insufficient, we must turn to quadratic approximations. For example, in economics and finance, models often rely on logarithmic or quadratic scales to reduce complexity. Understanding these models requires reducing computations to quadratic approximations.

Quadratic approximations are just an extension of linear approximations. We're merely taking an extra step in detail. The general formula:

f(x)β‰ˆf(x0)+fβ€²(x0)β‹…(xβˆ’x0)+fβ€²β€²(x0)2(xβˆ’x0)2 f(x) \approx f(x_0) + f'(x_0) \cdot (x-x_0) + \dfrac{f''(x_0)}{2}(x-x_0)^2

Where is that (1/2)fβ€²β€²(0){(1/2)f''(0)} factor coming from? Recall that a parabola is a quadratic. For the parabola's quadratic approximation to work, it must be itself:

f(x)=a+bx+cx2 f(x) = a + bx + cx^2

Differentiating the function above:

fβ€²(x)=b+2cx f'(x) = b + 2cx

Differentiating a second time:

fβ€²β€²(x)=2c f''(x) = 2c

Next, we want to determine a,{a,} b,{b,} and c{c} by evaluating the formula at zero:

f(0)=a+b(0)+c(0)2=afβ€²(0)=b+2c(0)=bfβ€²β€²(0)=2c \begin{aligned} f(0) = a + b(0) + c(0)^2 = a \\ f'(0) = b + 2c(0) = b \\ f''(0) = 2c \end{aligned}

Notice that the final approximation, fβ€²β€²(0){f''(0)} is 2c.{2c.} To recover c{c} then, we must divide by 2.{2.}

fβ€²β€²(0)=2cfβ€²β€²(0)2=c \begin{aligned} f''(0) &= 2c \\[1em] \dfrac{f''(0)}{2} &= c \end{aligned}

We now have our c{c} term: c=fβ€²β€²(0)2.{c = \dfrac{f''(0)}{2}.} This explains why we see the 1/2{1/2} term in our quadratic approximation formula:

f(x)β‰ˆf(x0)+fβ€²(x0)β‹…(xβˆ’x0)+fβ€²β€²(x0)2(xβˆ’x0)2 f(x) \approx f(x_0) + f'(x_0) \cdot (x - x_0) + \dfrac{f''(x_0)}{2}(x - x_0)^2

Notice that this really is just the linear approximation formula, with the additional term of a second derivative and a factor of 2.{2.} The linear part is the first portion, as we've seen, and the quadratic part is the second portion. Let's apply the formula above to the functin f(x)=ln⁑(1+x).{f(x) = \ln(1+x).} Recall that the linear approximation for this function is ln⁑(1+x)β‰ˆx.{\ln(1+x) \approx x.} Following our formula, we begin by laying out the derivatives:

f(x)=ln⁑(1+x)fβ€²(x)=11+xfβ€²β€²(x)=βˆ’1(1+x)2 \begin{aligned} &f(x) = \ln(1+x) \\[1em] &f'(x) = \dfrac{1}{1+x} \\[1em] &f''(x) = -\dfrac{1}{(1+x)^2} \end{aligned}

Then, we evaluate the functions at 0.{0.}

f(0)=0fβ€²(0)=1fβ€²β€²(0)=βˆ’1 f(0) = 0 \\ f'(0) = 1 \\ f''(0) = -1

Applying our formula, we get:

ln⁑(1+x)β‰ˆ0+1β‹…(xβˆ’0)+βˆ’12(xβˆ’0)2β‰ˆxβˆ’x22 \begin{aligned} \ln(1+x) &\approx 0 + 1 \cdot (x - 0) + \dfrac{-1}{2}(x - 0)^2 \\[1em] &\approx x - \dfrac{x^2}{2} \end{aligned}

Thus, we have the quadratic approximation

ln⁑(1+x)β‰ˆxβˆ’x22 \ln(1+x) \approx x - \dfrac{x^2}{2}

Applying the formula above to ln⁑(1.1),{\ln(1.1),} we have:

ln⁑(1.1)=ln⁑(1+110)β‰ˆ110βˆ’12(110)2β‰ˆ0.095 \begin{aligned} \ln(1.1) &= \ln \left(1 + \dfrac{1}{10}\right) \\[1em] &\approx \dfrac{1}{10} - \dfrac{1}{2}\left( \dfrac{1}{10} \right)^2 &\approx 0.095 \end{aligned}

Recall that ln⁑(1.1)=0.095310179804325.{\ln(1.1) = 0.095310179804325.} With quadratic approximation, we gain a little more accuracy.

Next, let's consider the quadratic approximation for f(x)=(1+x)r.{f(x) = (1+x)^r.} Again we lay out the derivatives:

f(x)=(1+x)rfβ€²(x)=r(1+x)rβˆ’1fβ€²β€²(x)=r(rβˆ’1)(x+1)rβˆ’2 \begin{aligned} &f(x) = (1+x)^r \\ &f'(x) = r(1+x)^{r-1} \\ &f''(x) = r(r-1)(x+1)^{r-2} \end{aligned}

Evaluating at x=0,{x = 0,} we get:

f(0)=(1+0)=1fβ€²(0)=r(1+0)rβˆ’1=rfβ€²β€²(0)=r(rβˆ’1)(0+1)rβˆ’2=r(rβˆ’1) \begin{aligned} &f(0) = (1+0) = 1 \\ &f'(0) = r(1+0)^{r-1} = r \\ &f''(0) = r(r-1)(0+1)^{r-2} = r(r-1) \end{aligned}

Plugging in these findings to our quadratic approximation formula, we have:

(1+x)rβ‰ˆ1+r(xβˆ’0)+r(rβˆ’1)2(xβˆ’0)2(1+x)rβ‰ˆ1+rx+r(rβˆ’1)2x2 \begin{aligned} (1 + x)^r &\approx 1 + r(x-0) + \dfrac{r(r-1)}{2}(x-0)^2 \\[1em] (1 + x)^r &\approx 1 + rx + \dfrac{r(r-1)}{2}x^2 \\[1em] \end{aligned}

Hence, we have the quadratic approximation:

(1+x)rβ‰ˆ1+rx+r(rβˆ’1)2x2 (1 + x)^r \approx 1 + rx + \dfrac{r(r-1)}{2}x^2

Let's examine the other functions we saw for linear approximation. To do so, we must gather all of the terms we need:

f{f}fβ€²{f'}fβ€²β€²{f''}f(0){f(0)}fβ€²(0){f'(0)}fβ€²β€²(0){f''(0)}
sin⁑x{\sin x}cos⁑x{\cos x}βˆ’sin⁑x{- \sin x}sin⁑0=0{\sin 0 = 0}cos⁑0=1{\cos 0 = 1}βˆ’sin⁑0=0{- \sin 0 = 0}
cos⁑x{\cos x}βˆ’sin⁑x{- \sin x}βˆ’cos⁑x{- \cos x}cos⁑0=1{\cos 0 = 1}βˆ’sin⁑0=0{- \sin 0 = 0}βˆ’cos⁑0=βˆ’1{- \cos 0 = -1}
ex{e^x}ex{e^x}ex{e^x}e0=1{e^0 = 1}e0=1{e^0 = 1}e0=1{e^0 = 1}

Applying the information above, we have the following quadratic approximations:

sin⁑xβ‰ˆxcos⁑xβ‰ˆ1βˆ’12x2exβ‰ˆ1+x+12x2 ∣xβ‰ˆ0 \large \left. \begin{aligned} &\sin x \approx x \\[1em] &\cos x \approx 1 - \dfrac{1}{2}x^2 \\[1em] &e^x \approx 1 + x + \dfrac{1}{2}x^2 \end{aligned} ~\right\vert_{x \approx 0}

Recall that, where ak=(1+1k)2,{a_k = \left( 1 + \dfrac{1}{k} \right)^2,} we have:

lim⁑kβ†’βˆžak=e \lim\limits_{k \to \infty}a_k = e

We determined by first taking the logarithm of both sides:

ln⁑(ak)=kβ‹…ln⁑(1+1k)2 \begin{aligned} \ln(a_k) &= k \cdot \ln \left( 1 + \dfrac{1}{k} \right)^2 \\[1em] \end{aligned}

Then, applying the limit:

ln⁑(ak)=lim⁑kβ†’βˆžkβ‹…ln⁑(1+1k)2=e \begin{aligned} \ln(a_k) &= \lim\limits_{k \to \infty} k \cdot \ln \left( 1 + \dfrac{1}{k} \right)^2 \\[1em] &= e \end{aligned}

We can achieve the same result with quadratic approximation by first applying linear approximation. First, we know that:

ln⁑(1+x)β‰ˆxΒ Β whereΒ Β x=1kβ‰ˆ0 \ln(1 + x) \approx x ~\text{ where }~ x = \dfrac{1}{k} \approx 0

It follows then that:

ln⁑ak=k(1+1k)β‰ˆkβ‹…1k \begin{aligned} \ln a_k &= k \left( 1 + \dfrac{1}{k} \right) \\[1em] &\approx k \cdot \dfrac{1}{k} \end{aligned}

Thus we have:

ln⁑ak=kβ‹…ln⁑(1+1k)β‰ˆkβ‹…1k \begin{aligned} \ln a_k &= k \cdot \ln \left( 1 + \dfrac{1}{k} \right) \\[1em] & \approx k \cdot \dfrac{1}{k} \end{aligned}

The value k(1/k){k(1/k)} is easy to evaluate. It's just 1.{1.} This the linear approximation.

ln⁑((1+1k)2)β‰ˆ1 \ln\left(\left(1 + \dfrac{1}{k}\right)^2\right) \approx 1

Question: What is the rate of convergence for ln⁑ak?{\ln a_k?} In other words, how fast does:

ln⁑ak=kβ‹…ln⁑(1+1k) \ln a_k = k \cdot \ln(1 + \dfrac{1}{k})

approach 1?{1?} Let's rephrase the question by rewriting the expression:

ln⁑akβ†’1ln⁑akβˆ’1β†’1βˆ’1ln⁑akβˆ’1⏟HowΒ bigΒ isΒ this?β†’0 \ln a_k \to 1 \\[1em] \ln a_k - 1 \to 1 - 1 \\[1em] \underbrace{\ln a_k - 1}_{\text{How big is this?}} \to 0

The answer lies in quadratic approximation.

Again, all of the approximations above depend on the assumption that x{x} is near 0.{0.} Summarizing our approximation formulas:

FunctionApproximation Formula
sin⁑x{\sin x}x{x}
cos⁑x{\cos x}1βˆ’12x2{1 - \dfrac{1}{2}x^2}
ex{e^x}1+x+12x2{1 + x + \dfrac{1}{2}x^2}
ln⁑(1+x){\ln(1 + x)}xβˆ’12x2{x - \dfrac{1}{2}x^2}
(1+x)2{(1 + x)^2}1+rx+r(rβˆ’1)2x2{1 + rx + \dfrac{r(r-1)}{2}x^2}

Quadratic approximations can get very nasty. Accordingly, we should only resort to them if we truly aren't satisfied with a linear approximation. Consider the following problem:

Problem. Find the the quadratic approximation for the function f(x)=eβˆ’3x(1+x)βˆ’1/2{f(x) = e^{-3x}(1+x)^{-1/2}} where x{x} is near 0.{0.}

Carrying out the approximation with the approximation formulas above, we have:

eβˆ’3x(1+x)βˆ’1/2β‰ˆ(1+(βˆ’3x)+(βˆ’3x)22)(1βˆ’12x+12(βˆ’12)(βˆ’32)x2)β‰ˆ1βˆ’3xβˆ’12x+32x2+92x2+38x2 \begin{aligned} e^{-3x}(1+x)^{-1/2} &\approx \left(1 + (-3x) + \dfrac{(-3x)^2}{2}\right) \left(1 - \dfrac{1}{2}x + \dfrac{1}{2}\left(- \dfrac{1}{2}\right)\left(- \dfrac{3}{2}\right)x^2\right)\\[1em] & \approx 1 - 3x - \dfrac{1}{2}x + \dfrac{3}{2}x^2 + \dfrac{9}{2}x^2 + \dfrac{3}{8}x^2 \end{aligned}

If we applied the approximation formulas in their entirety, we'd notice that there are some missing terms. These terms were dropped. Why? Because these higher order terms get so small that they're negligible. Simplifying the aproximation above, we have:

eβˆ’3x(1+x)βˆ’1/2β‰ˆ1βˆ’72x+518x2 e^{-3x}(1+x)^{-1/2} \approx 1 - \dfrac{7}{2}x + \dfrac{51}{8}x^2

Notice that the term 1βˆ’72x{1 - \dfrac{7}{2}x} is the linear approximation. The additional term, 518x2{\dfrac{51}{8}x^2} is the additional term we obtain from quadratic approximation.