Introduction to Complex Analysis

This chapter covers notes on complex analysis.

Constructing the Complex Numbers

Preliminary Definitions

Here is our working definition of a complex number:

complex numbers. The set of complex numbers C{\Complex} is the set

C={(a,b)a,bR}. \Complex = \set{(a,b) \mid a,b \in \reals}.

Given a complex number c=(a,b){c = (a,b)} we say that a{a} is the real component of c,{c,} denoted Re(c)=a,{\text{Re}(c)= a,} and that b{b} is the complex component of c,{c,} denoted Im(c)=b.{\text{Im}(c) = b.} We may express a complex number (a,b)C,{(a,b) \in \Complex,} with the notation a+biC.{a + bi \in \Complex.}

imaginary unit. The tuple i=(0,1){i = (0,1)} is called the imaginary unit.

Complex Arithmetic

Addition and subtraction of complex numbers is simply component addition and subtraction.

definition. Given (a,b),(c,d)C,{(a,b), (c,d) \in \Complex,} the following operations are are defined:

(a+bi)+(c+di)=(a+c)+(b+d)i       addition(a+bi)(c+di)=(ac)+(bd)i       subtraction(a+bi)(c+di)=(acbd)+(ad+bc)i       multiplication(a+bi)/(c+di)=(a+bi)(cdi)(c+di)(cdi)       division \eqs{ &(a + bi) + (c + di) = (a + c) + (b + d)i &~~~~~~~ \text{addition}\\ &(a + bi) - (c + di) = (a - c) + (b - d)i &~~~~~~~ \text{subtraction}\\ &(a + bi)(c + di) = (ac - bd) + (ad + bc)i &~~~~~~~ \text{multiplication}\\ &(a + bi)/(c + di) = \dfrac{(a+bi)(c-di)}{(c+di)(c-di)} &~~~~~~~ \text{division} }

where a,b,c,dR.{a,b,c,d \in \reals.}

properties of complex arithmetic. Let α,βC.{\alpha, \beta \in \Complex.} Then the following properties hold:

  1. α+β=β+α{\alpha + \beta = \beta + \alpha} for all α,βC.{\alpha, \beta \in \Complex.}
  2. αβ=βα{\alpha\beta = \beta\alpha} for all α,βC.{\alpha, \beta \in \Complex.}
  3. (α+β)+λ=α+(β+λ){(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)} for all α,β,λC.{\alpha, \beta, \lambda \in \Complex.}
  4. (αβ)λ=α(βλ){(\alpha\beta)\lambda = \alpha(\beta\lambda)} for all α,β,λC.{\alpha, \beta, \lambda \in \Complex.}
  5. λ+0=λ{\lambda + 0 = \lambda} for all λC.{\lambda \in \Complex.}
  6. λ1=λ{\lambda \by 1 = \lambda} for all λC.{\lambda \in \Complex.}
  7. For all αC,{\alpha \in \Complex,} there exists a unique βC{\beta \in \Complex} such that αβ=1.{\alpha\beta = 1.}
  8. λ(α+β)=λα+λβ{\lambda (\alpha + \beta)= \lambda\alpha + \lambda\beta} for all α,β,λC.{\alpha, \beta, \lambda \in \Complex.}